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Abstract

We consider identification of distributed systems via adaptive wavelet neural net-
works (AWNNs). We take advantage of the multiresolution property of wavelet systems
and the computational structure of neural networks to approximate the unknown plant
successively. A systematic approach is developed in this paper to find the optimal
discrete orthonormal wavelet basis with compact support for spanning the subspaces
employed for system identification. We then apply backpropagation algorithm to train
the network with supervision to emulate the unknown system. This work is applica-
ble to signal representation and compression under the optimal orthonormal wavelet
basis in addition to autoregressive system identification and modeling. We anticipate
that this work be intuitive for practical applications in the areas of controls and signal

processing.
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1 Introduction

There are two well known types of system identification schemes, parametric and non-
parametric. The former depends on the given model structure used in identification and
determines the model’s parameters based on input and output of the unknown systems.
The second scheme does not require the information regarding to the model structure and
gives an estimate of the impulse response of the unknown systems. However, some cases are
not suitable to be treated with these conventional approaches due to insufficient analytical
knowledge of the plant, incomplete information on the number of key parameters and the
presence of disturbance and uncertainties. Even when enough knowledge about the system
is available, the model of the system may be too complicated to be used to design control
systems.

We are interested in introducing another form of identification scheme which employs a
parallel computational structure and uses knowledge from measurement to adapt to different
models and structures. This method can be used for both linear and nonlinear systern
identification. The underlying idea is two-fold: first, identify the type or class of the system
and pick a simple component or a structure which describes the characters of the system;
second, start from the simple structure to build a basis to generate or approximate the
given systems successively in an appropriate functional space.

We have found recent advancement in wavelet theory encouraging in generating an
autoregressive modeling structure for system identification and signal approximation in
L?(R). There have been extensive research interest and activities in wavelet theory and
its applications in recent years [4] [7]. The most attractive features of wavelet theory
are the multiresolution property and time and frequency localization ability. The wavelet
transform decomposes a signal to its components at different resolutions. Its application
actually simplifies the description of signals and provides analysis at different levels of detail.
There are some successful applications of these properties in the fields of signal processing,

speech processing and especially in image processing [16] [12]. It was shown [13] that it is

possible to derive a base wavelet function ¢(z) € L?(R) such that for 5,1 € Z, {1;i(2)};1ez
with
Yii(e) = Voip(Pe - 1) (1)

is an orthonormal basis of L?>(R). Any square integrable function f(z) € L(R?) can be

represented as

fla) =) wjii(x), (2)

i

the coeflicients w;-’ls carry the information of f(z) near frequency 2’ and near x = 2771.



Any signal in L?(R) can be decomposed to its components in different scales in subspaces
of L2(R) of corresponding resolutions and the reverse is true when the regularity condition
for the base wavelet 9(z) is introduced [7] [13]. The base function 1(z) plays a central role
in this formulation.

We consider identification as constructing a suitable subspace of L?(R) and generating a
function to approximate the output of the system with respect to the input since a large class
of transfer functions of flexible structure systems and distributed systems belong to L?(R).
The identification of a transfer function or a input output relation can thus be formulated
as the approximation of a function in L?(R) by its projection on an appropriate subspace of
L2(R). If we can construct a suitable subspace of L2(R) in an appropriate scale spanned by
dilating and shifting a base wavelet function, we should be able to approximate a function in
L2(R) with a function in the subspace of the relevant resolution in the sense of minimizing
a norm of the difference between the two functions. Naturally, the best approximation
is predetermined by the subspace in consideration and thus by the base wavelet which
determines the dynamical characteristics of the subspace used for approximation. If partial
information of the system is available a priori, or the class of the function to be approximated
is detected, an appropriate wavelet basis could be built and the multiresolution property
can be used to approximate the function regressively.

When a function in L2(R) or a transfer function in H2(R) is unknown, the wavelet
system is feasible for its identification. Some work relating wavelets to linear systems can
be found in [15]. Since a closed expression is usually not available for practical purposes,
it is necessary to use a sum of finite number of functions, typically of lower order or less
complexity, to approximate the original transfer function. A wavelet system can be im-
plemented to emulate the unknown system. This process is completed by adjusting the
coeflicients with respect to the wavelet basis.

The transfer function of an infinite dimensional system or a distributed system is usually
a sum of infinitely many functions of certain classes. Under certain conditions, a distributed
system with a transfer function G(z,&,s) can be represented by infinite many parallel

aperiodic distributed blocks and oscillatory blocks[3],
(z,€,5) = ZG (s)piz)q:(§) (3)

where p and ¢ are the eigenfunctions of the corresponding boundary value problems. The
Green’s function has a similar structure which is the system’s impulse response. We shall

use G(s) to denote the above transfer function for clarity in notation. When we mention



a transfer function, we refer either a concrete transfer function or an implied input output
relation in the rest of the paper. The summation form of both transfer functions and
the Green’s function can be arranged in a tree-like structure; the sum of the weighted
functions can be laid out as a summation of the weighted subsums of similar structures.
The weighted sum reminds us a computational structure: neural networks. We arrange
the wavelet system in a similar fashion such that coefficients of the systems turn into the
synapses of the neural networks. The process of approximation becomes training of the
neural network. Techniques from neural networks are applicable.

A general representation of a neural network is a computational structure of finite linear

combinations of the form

N
9(x) =Y wjo(al x + b;), (4)
i=1

where x,a; € RV, b; € R are fixed. The network is formed from weighted compositions and
superpositions of a single, simple nonlinear pattern or response function. The univariate
function o depends heavily on the context of the application. Neural networks have found
their applications in controls and system identification. A neural network was used as an
emulator and controller to control a highly nonlinear truck-trailer docking problem in [14].
Some applications of neural networks have been studied and summarized in [8] regarding
modeling, identification and control structures. The nonlinear functional mapping proper-
ties of neural networks are central to their applications in system identification and controls.
It has been proven [6] that a two-layer neural network can approximate a nonlinear func-
tion to an arbitrary degree of accuracy. However, the number of neurons required in the
networks may far exceed the limit for practical implementations. This poses a burden for
the applications in on line system identification and real time system controls. An issue
in control is the dynamical nature of the system. When proper dynamics are included in
the neural networks, the performance of the networks is expected to be improved. With
wavelet dilations incorporated into the network, the signals to the neurons are preprocessed
by the wavelet blocks. We anticipate that the information from the wavelet basis will reduce
the number of neurons needed to achieve the same performance provided that the wavelets
contain useful information of the systems in consideration.

Our thoughts on a unified work on wavelets and neural networks are further encouraged
by the work in [20]. We are interested in a new formulation using both the multiresolution
property from wavelet decomposition and the convenience of computational structures of
neural networks to approximate the unknown plants; We introduce in this paper a self-
tuning wavelet neural network which adjusts its wavelet basis according to measurements.

We call it an adaptive wavelet neural network (AWNN).
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Figure 1: A wavelet neural network identification structure

This paper is organized as follows. The next section formulates the identification prob-
lem via adaptive wavelet neural networks. The third section provides details on the selection
of the optimal wavelet base function for the wavelet neural networks. The fourth section
addresses the network training and discusses a learning algorithm. The last section suggests

future research and concludes the paper.

2 Problem statement

Given an infinite dimensional stable system with unknown transfer function G(s), we set
up an identification structure shown in Figure 1, in which u(s) and y(s) are the input
and output to and from the unknown system. An adaptive wavelet neural network block
(AWNN) is used to emulate the given system with z(s) as its output. The matching error
e(s) is defined as the difference between y(s) and z(s). The network is tuned to match the
system through minimizing the error e(s).

The structure of an adaptive neural wavelet network is shown in Figure 2 , in which
u(s) is the input to both the system and the network, z(s) is the corresponding output.
This network contains a hidden layer of an appropriate wavelet basis {+;,;} from dilating
and shifting a base wavelet 1(s) which is to be determined via an optimal adaptive scheme
of basis selection. The activate function o(-) is a nonlinear function. One of the possible
forms is a sigmoidal function

1— 6—233

o) = e

(5)
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Figure 2: An AWNN block

Although this is a general setting, the dynamics of the activation function can be selected
either as a linear or a nonlinear function according to the dynamics of the wavelet blocks.

The output of the network is given by

z(s) = o (O wjphj(s))u(s), (6)

3l

where
G(s) = o (> wiju(s)) (7)
il
is the estimated transfer function of the unknow system. The function G (s) approximates
the transfer function to a certain level of resolution which depends on the resolution of the
subspaces spanned by the wavelet functions.

The base wavelet function 9 (z) determines the dynamical nature of the adaptive wavelet
neural networks. How to choose the right wavelet function +(z) is an important and non-
trivial issue which has drawn recent attentions from the signal processing communities [18].
Different base wavelet functions shall generate different subspaces used to approximate

transfer functions in L?(R) and produce different results. We are interested in finding the

wavelet function which describes the dynamical behavior of the systems in consideration



most closely. When incorporated into the network, the wavelet network should have the
best performance for a certain complexity or to provide a certain performance level with a
minimum complexity. This is true when 1(z) is chosen to contain information regarding
the class on the given systems. We say a base wavelet is optimal if a nonnegative additive
information measure M [5] which describes the distance between a finite length signal and
the wavelet basis generated by v (z) is minimized. The information measure is a functional

which is defined by
M : L*(R) x L*(R) — R™. (8)

We shall use this optimal wavelet function 1(z) in our wavelet neural networks for system
approximation. The selection of the optimal base wavelet shall be discussed in detail in the

section that follows.
We define the random error at instant k by the random sample (ug, yi) as the difference

between y; and zp, with the system output yi as the desired output for the neural network.
The error at the k** is defined by
ek = Yk = Zk- (9)

The square of error at step k is
1
By, = 5lye — %)% (10)

The accumulated error F,

E=) E (11)
k

sums the errors of the first k iterative steps. The network with a minimal matching error
E is required to emulate the unknow system. The identification problem transforms into

trajectory learning in discrete time domain.
Our problem becomes two folds: selecting the best wavelet basis for a wavelet neural
network; training the AWNN afterwards to match the unknown plant. First, we need to
find the optimal base wavelet function *(z) such that the positive cost measure M is

minimized for the detected dynamical behavior of a given system, i.e.,

P™(z) = arg min My(¢, f(z)). (12)

Secondly, we need to train the network to emulate the given system in the sense of finding

the optimal weights {w;;} to minimize the cost index J which is

Jopt = min Elw]. (13)



The input-output relation of the trained neural wavelet network is used to represent the
transfer function of the given system to facilitate the design of control systems. This forms

a self-tuning system identification scheme via an AWNN.

3 Selection of base wavelet functions

We shall study the problem of choosing the optimal wavelet basis with compact support of
an appropriate size in this section. We first briefly review the multiresolution property of
wavelet functions and the conditions for generating a set of compactly supported discrete
wavelet basis in terms of properties of quadrature mirror filter (QMF) banks [19]. We
then introduce the concepts of information measure as a distance measure and the optimal
discrete orthonormal wavelet basis under the information measure. A systematic approach
is being developed here to derive the information gradient and the best wavelet basis. This
approach can be implemented for real time systems due to our parameterization of the
problem.

A multiresolution approximation due to [13] of L2(R) is a sequence {V;}jcz of closed

subspaces of L2(R) such that the following hold with Z denoting the set of all integers,

V;CVip, Vi€Z (14)
+o00 “+o0
U V; is dense in L?(R) and n V; = {0} (15)
j=—00 j=—00
f@)eVij<= f(2z)€Vj41, Vj€Z (16)
f@)eV,= f(z—279k) €V}, ke Z (17)

and there is a scaling function ¢(z) € L2(R), such that, for all j € Z,

V2i$(2iz —1))iez (18)

is a orthonormal basis of V; with V; C Vj;1. With this setting, H;, the complement of
Vj C Vj41, can be expressed as

Vi® Hj = Vi, (19)
with
_ mJ-1

For all j, there is a wavelet function ¥(z), such that,

V2iy(2s — D))iez (21)



is an orthonormal basis of H;. The additional information in an approximation at resolution
27+l compared with the resolution 27 is contained in the subspace H j, the orthogonal

complement of V; € V1. If we define Py, to be a projection operator in L2(R) and I to
be the identity operator, then

Py, — I, as j — +oo. (22)

A particular useful setup for our problem is a set of discrete orthonormal wavelet basis
with compact support. It is useful for real time implementation on digital computers. The
compactness of support provides a means of isolation and detection of signals at a certain
region which has proven useful in signal processing communities. Both the discrete scaling
function ¢(z) and the discrete wavelet function 1 can be parameterized by a set {ct} with
ks belonging to a set of integers.

The scaling function ¢(t), with t denoting discrete time, compactly supported on [0, K —

1], can be expressed as [7]

$(t) = ; cxd(2t — k). (23)
The discrete wavelet is given by

P(t) = Zk: drp(2t - k), (24)
where

ck #0, ke [0,K —1). (25)

These are the two fundamental equations for wavelet function ¥(¢). The scaling function
#(t) can be nonzero only on [0, K — 1] due to the finite duration of the sequence {cx}. The
base wavelet function obtained through ¢(t) is also compactly supported. The coefficients
{cx} and {di} can be identified as a low pass filter and a high pass filter respectively. Let
us denote ho(k) = ¢;/2 and hj(k) = di/2 and take their Fourier transforms

Ho(e™) =Y ho(k)e ™, (26)
P

and
Hy () =Y h(k)e™ . (27)
k



The conditions for compactly supported orthonormal wavelet and scaling functions are

equivalent to that the matrix

M) = | HE)  Hi(e)

= | B my(erer) 28)

is unitary for all w for the two-channel quadrature mirror filter (QMF) bank [1]. This is the
constraint that the parameters ¢; should satisfy. In particular, the cross-filter orthonormal-

ity implied by the unitary property, is satisfied by the choice [1]
Hi(2) = 25X 'Ho(—2z71), N even (29)
or in the time domain,
hi(k) = (=1)**ho(K — 1~ k), (30)
and in addition

/z/;(t)dt =0. (31)

As we can see from the above, both the scaling function and the wavelet function depend
on the choice of {¢} for k € [0, K — 1]. The base wavelet function depends on the selection
of this set of parameters.

The key to choosing the optimal wavelet base for the AWNN lies in the appropriate
parameterization and the right performance measure in addition to the accurate interpre-
tation of physical phenomena. A method is proposed in [18] [10] for choosing a wavelet
for signal representation based on minimizing an upper bound of the L? norm of error in
approximating the signal up to the desired scale. Coifman et al. derived an entropy based
algorithm for selecting the best basis from a library of wavelet packets [5]. However, a direct
method to systematically generate the best orthonormal discrete wavelet basis with com-
pact support is still to be developed. We shall provide here a direct approach to calculate
the best discrete wavelet basis.

We first introduce a distance measure for optimization purpose. Inspired by the work
in [5], we define an additive information measure of entropy type and the optimal basis as

the following.

Definition 3.1 A non negative map M from a sequence {f;} to R is called an additive
information measure if M(0) =0 and M(X; fi) = X, M(fi).

Definition 3.2 Let z € RV be a fized vector and B denote the collection of all orthonormal
bases of dimension N, a basis B € B is said to be optimal if M(Bz) is minimal for all

bases in B with respect to the vector f.

10



We shall define a distance measure between a signal and its decompositions to subspaces

of L?(R) motivated by Shannon entropy (Shannon’s formula) [9]

H(X)= Z P(z)log P(z), (32)

z€X

which is interpreted as a measure of the information content of a random variable X with

distribution P, = P in information theory.

Definition 3.3 Let H be a Hilbert space which is an orthogonal direct sum
H=o) H, (33)

a map & s called decomposition entropy if

”Uzll ""71“
E(v 34
2 llv || ol (34

forv e H, ||v|| #0, such that
vz@zvi,vieHiv (35)

and we set
plogp =0, when p=0. (36)

Entropy is a good measure for signal concentration in signal precessing and information
theory. The value of exp £(v) is proportional to the number of coefficients and the length of

code words necessary to represent the signal to a fixed mean error and to error less coding

respectively. The number U—II-L,— is the equivalent probability measure in the decomposition

lll
entropy. In our system identification formulation, energy concentration is identified with

model of lower order or networks with less complexity.

Let 1 (t) be the base wavelet function and let ¥(t) represent the orthonormal discrete
wavelet basis of L2 generated by dilation and shifting of 1(t), similarly, we define ¥; to be
the basis of H;. We write ¥(t) = {4;;(¢)} and ¥;(¢) = {¢;:(¢) }icz respectively. We treat
both ¥(t) and ¥; as operators and thus define the following,.

Definition 3.4 Let ¥ be a basis given above, a base operation is defined to be a map from

L?(R) to a set of real numbers, i.e., U(t) f(t) = {fj1}j1ez where fi1 = (f(t),%;(2)) for all
f() e L%

11
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Consider Vj, the subspace of L2(R), with

Vy = ol-! H; (37)

j=—co

Equation (7) and Equation (2), let M and N be appropriate positive integers, we truncate

the approximation in Equation (2) to a scale up to M, we have

M N
fle)y= > > wij(z). (38)
j=—MI=—N
The subspaces used to approximate function f(z) has a mesh of size (2M + 1) x (2N + 1)
as in Figure 3.
Given a function or signal f(t) € L?(R) and a base wavelet function v (¢) with a finite

mesh of size (2M +1) x (2N + 1), we can decompose the signal to the orthogonal subspaces
as

M N
A= > Y i) (39)
j=—MI=-N

We are going to find the best wavelet base function (t) for a given signal f(¢) such that
the additive information measure M is minimized. The result of the base operation ¥ f(t)
appears as the weights on the nodes of the mesh. The weights on the vertical line with

coordinate j is the number set produced by ; f(t)

12



Although the decomposition entropy is a good measure for the “distance”, it is not an
additive type of map because of the norm ||v|| is used to scale the vector. We thus further

introduce a functional
A(Tv) = = Jluill* log J|vi?, (40)
J

which relates to the decomposition entropy through

E(v, {Hi}) = |lol| 72 M(®v) + Zlog lloll?. (41)
J

The former function in (40) is an additive measure. Since minimizing the later minimizes
the later, we minimize functional A(®f) for seeking the optimal wavelet basis through
multiresolution decompositions.

The weight of decomposition of signal f(t) on a subspace H; is measure by a subnorm

||f;]| defined as

150l = |Pa @] (42)
where
N
If02 =3 fh (43
I=—N

Similarly, the norm of the decomposed signal is given by

M

IFOF = 3 1517 (44)

j=—M

We need to further find %{-Lk'l which is a measure of sensitivity of the component of signal

decomposition to a wavelet basis versus the change of the defining parameter set of the base
wavelet. One can solve this through numerical methods from the relations and definitions.
Based on the definition of information gradient and the properties of QMF discussed earlier,

we derive an explicit expression as following.

Lemma 3.1 The sensitivity gradient %%—' of component 1;,; of the wavelet basis ¥ versus

parameter ci is given by
Mit _ /57 2 [(—1)""“¢(21‘+1t 90— )+ (1) ey (25— 21 — )]
Jdeg, — deg,
(49)

13



Proof:

From the fundamental equation of wavelets (24),

0v;y

0 - .
—9 2 J+l, o1 _
e 26% 27 En hi(n)¢(22 7't — 21 — n).

This is
7 N~ Oh1(n) o it1 0 ot

From Equation (23), we have

04(t) _
der o(2t — k).
hence,
—a—¢(2ﬂ'+1t — 2 —n) = ¢ — 4l — 2n — k).
Ocy,

We need to find Q%‘c%l, from the time domain relation (30) of the QMF, we have ,

hi(n) = (=1)"*'ho(K — 1 —n)
with hg being compactly supported on [0, K — 1]. Thus,

19

hi(n) = 300

(-1 eg_1-n,
there is only one nonzero term when K — 1 —n = k. This yields,

Ohi(n) _ (=1K*

Ocy. 2

The lemma is proven through (49) and (52).

(46)

(47)

(50)

(51)

(52)

O

This lemma establishes a direct link between the rate of change of the components in the

basis ¥ and the variations of the parameters in the fundamental equations of wavelets, which

leds to the next theorem. We introduce the following theorem to show the relationship

between the information measure and the parameter set ¢; and the relation here shall

provide a clue for developing an algorithm to find the optimal base wavelet function for the

AWNN.

14



Theorem 3.1 Let A(-) be the additive information measure and [0, K — 1] be the compact
support for {c;} and ¥ be the corresponding wavelet basis, let f(t) be a fized signal in L2(R),

then the gradient of the information measure with respect to the set {cy} for the signal is

given by

DA - 25 S og2ll? VI L (-0 (70,927t -2 )
i n
+H=1)"ex1n (£(0), 4@t — 1 — 20— R)]. (53)

Proof:

By the chain rule, we have the information gradient

OMI(®) _ o~ INET () A1,

54
dec % OIHE oa e
The definition of information measure A(f(%)) in (40) yields,
OAN(Tf(t
PO o gy -1
all sl
= —log2||f;*, (55)
with 2 being the base of log function. We use the chain rule again,
o> _ o 2
be = Do 2T
Ofj
= 2 ety 56
2 i, (56)
We have so far
OA(¥f(t) w2, Ofig
o = 2; lelogz Il fiazg (57)
Since
Ofj1 _ 31/)j,1>
the result from the previous lemma concludes the proof.
O

15



The theorem demonstrates an explicit relation among the gradient of the additive informa-
tion measure, parameter set {cx} and the measured signal f(t). It will facilitate the search
for the optimal wavelet basis due to our parameterization and the information measure.
We have identified the problem of finding the optimal wavelet basis ¥ with that of
finding a parameter set {c} such that the additive information measure A is minimized.
Once the set {c;} is determined, both the scaling function ¢ and the base wavelet function
¥ can be derived afterwards. Equipped with the above theorem, the information gradient
is available, different optimization schemes can be applied to solve this problem. We have
developed a basis choosing algorithm based on a steepest descent method as follows. To

simplify notation, we denote the parameter set {coc; - - - cx—;} by a vector C.

Algorithm 1 Computation of the optimal wavelet basis
Step 1: Seti:=1,
)\0 = 0,
mesh parameters M, N ;
Initialize vector Cy;

Input f(t).
Step 2: If C; dose not satisfy the constraint,
then, modify C; and repeat Step 2.
Step 3: C; .= Ci_1 +pi_13—gi)‘—_l-.
Step 4: Compute ¢ and 1.
Step 5: Compute X.
Step 6: If |Ai — Ai—1| > ¢,
t:=1+1, go to Step 2.
Step 7: Output the optimal basis ¥ and stop.

The mesh size is governed by the choice of parameter M and N. Obviously, when M and
N turn to infinity, the supporting subspace spanned by the dilations and shifts of the base
wavelet turns to space L2(R). The size of the mesh is identified with the complexity of the
resulted AWNN. The constraint on the parameter ¢ is dominated by the unitary property
of the QMF bank which can be transformed into an algebraic equation.

This section has provided us a direct method to construct an optimal orthonormal
wavelet basis with compact support. The parameterization of both the information measure
and the base wavelet allows an explicit expression of information gradient with respect to the
optimization parameters and thus paves the way to the efficient basis choosing algorithm.
This methodology of the optimal basis selection in a general setting is useful not only within
this identification structure but also to signal approximation and reconstruction in L2(R).
The parametrization of cost functionals is not unique, other forms of measures or cost

functions may be introduced according to the contexts of the actual physieal problems.

16
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4 Network training

This section describes a supervised learning process of the AWNN. The training of an
AWNN consists two stages, a pre-training procedure and an actual training scheme via
weight updating. The pre-training is a preparation process of configuration or adjusting
the basis of the network based upon the output measurements from the unknown systems
excited by a test signal. The purpose is to equip the network with the appropriate dynamics
and generate an AWNN of a manageable size. The network is trained afterwards with a
supervised learning process. The training structure is shown in Figure 4.

During the first stage, the network takes the output of the unknow systems excited by a
test signal and looks for the best wavelet basis with the switch at the closed position. The
algorithm given in the previous section is used here to generate the best wavelet basis ¥ for
the AWNN. The dynamical behavior of the AWNN is thus determined by this process. This
stage also provides appropriate initial weights for the network training to start with. Since
the basis contains the measured information of the unknown system, the required size of the
network is reduced compared with a neural network without the dynamical components.
This will speed up the network training process.

The next stage is the network training which is a goal-directed learning aimed at mini-
mizing the relevant cost functional. It is supervised learning since certain pattern of v (x)
related to the unknown system is used during training. Different training algorithms were
discussed in [11], [17] and [2]. Due to the convenience of our problem formulation, we use
the backpropagation algorithm in [11] to train the AWNN. The backpropagation algorithm,

an extension of LMS algorithm, modifies the weights at each step with nonlocal error in-
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formation. This is an implied feedback which closes the loop for adapting weights of the
AWNN. The backpropagation provides a suboptimal solution in the sense of using a finite
number of wavelet blocks to approximate the infinite dimensional system. The task here is

to minimize the cost functional J of Equation (13) which is rewritten here for convenience.
Jopt = rrbi)n Efw]. (59)
From the structure of the AWNN, we have

S=) wjihji(s)u(s) (60)
il
as the input to the sigmoidal function o(-). We update the weight w; (k) at k'* iteration

by a stochastic difference equation

wj’l(k +1)= 'wj,l(k) + qkij,l(k) (61)

where
A IE 9
Aw],[(k) —_ aw]’l . (64.:)

with the learning coefficients g;’s satisfyin
g q ying,

> i =00 (63)
k

Z ¢ < . (64)
k

The condition (63) constrains the sequence {q;} to decrease slowly, while (64) constrains
to decrease g quickly. The combined effect is to guarantee the appropriate learning rate.

The gradient of the cost functional with respect to the weight w;; is expressed as

oJ _ OFE,
dw; k ow; )

(65)

We refer the definition of the square of error at step k in Equation (10) and use the subscript

k of a variable to denote the value of the variable at the instant k. By the chain rule, we

have
OE, (e — ) 0z
dujg — T oy
= —(y— )_8_:2_’1 95k
- TR B8, dw;y
= —(yr — 2k)0" (Sk)¥j Uk (66)
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Hence
Awjp = (yr — o(Sk))o’ (Sk)hjux

= (yp — o (Q_ wiajue))o’ O wj; jur)h; uk (67)

U gl
as the weights updating scheme. The general backpropagation algorithms can be found
in [11]. This process starts by assigning y;, the coefficients from the base operation ¥y of
the measured output y(s) to the wavelet basis of the AWNN, to w;;(0). The trained neural
wavelet network shall be used to implement control system design. The reconstruction

form the given wavelet base is the approximation of the plant up to a certain resolution.

Summerizing the above yields the following algorithm.
Algorithm 2 AWNN training scheme
Step 1: Seti:=1,
Jo =0,
Input ¥.
Set wj (0) = y;y;
Step 2: wj(3) == wj(t — 1) + i1 Aw; (i — 1).
Step 3: Compute J;.
Step 4: If |J; = Ji—1| > ¢,
1:=1+1, go to Step 2.
Step 7: Stop.

Neural networks are just another way of curve fitting to available data. They have
both advantages and disadvantages. They are conceptually simple and easy to use and are
adaptable to complicated problems or suitable to deal with problems which do not have
a modeled structure or are too complicated to model. Another advantage is that neural
networks offer a distributed, parallel processing ability thus provide integrity and possible
fault tolerance. The function of each neuron is usually a simple function which is easy to
implement. The most obvious disadvantage is that neural networks do not recognize and
preserve the structures of the systems they deal with and there is no systematical way to
determine the structures of the networks. Embedding dynamical components depending on
the problem context into the networks will be useful in overcoming the disadvantages. Our
attempt in designing an AWNN will be of research potential in this regard.

The AWNN can be structured differently. For example, instead of using only one hidden
layer, we can use a multi-layer neural network. One of the structures is a two layer format
with each neurons in the hidden layer being responsible for a subspace of fixed scale while
the neuron in output layer summing the results from all the subspaces. This structure may
facilitate the computation. Different computational structures are to be compared for the

best result.
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5 Conclusions

We have developed an algorithm for identification of infinite dimensional systems via an
adaptive wavelet neural network. We first solve the problem of selecting the compactly
supported optimal wavelet base function for spanning the subspaces in which the unknown
system is approximated up to a predetermined resolution. An algorithm is given for con-
structing the optimal basis ¥ for the network emulator based on the measurements of the
output from the unknown system. We then apply a backpropagation algorithm to train the
resulting AWNN for system approximation. This is an efficient way of approximating an
infinite dimensional system up to a certain resolution in a subspace of L?(R) spanned by
the dilations and shifts of the optimal base wavelet. Qur method combines the advantage
of multiresolution property of wavelet decompositions and the convenience of the compu-
tational structures of neural networks. The marriage of the best from both fields should
provide a powerful took kit for solving problems of a much wider range. Our approach can
be generated to N dimensional case with signals from L2(R"). The methodology developed
in this paper is expected to be useful not only for system identification and autoregressive
modeling but also for signal classification, signal compression and reconstruction as well.

Future research is needed on these aspects.
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